Sunday, June 11, 2023
HomeTechnologyOptoelectronic graded neurons for bioinspired in-sensor movement notion

Optoelectronic graded neurons for bioinspired in-sensor movement notion


  • Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jang, H. et al. In-sensor optoelectronic computing utilizing electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).

    Article 

    Google Scholar
     

  • Chai, Y. In-sensor computing for machine imaginative and prescient. Nature 579, 32–33 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, C. et al. Curved neuromorphic picture sensor array utilizing a MoS2–natural heterostructure impressed by the human visible recognition system. Nat. Commun. 11, 5934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, F. et al. Optoelectronic resistive random entry reminiscence for neuromorphic imaginative and prescient sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seung, H. et al. Integration of synaptic phototransistors and quantum dot light-emitting diodes for visualization and recognition of UV patterns. Sci. Adv. 8, eabq3101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jayachandran, D. et al. A low-power biomimetic collision detector based mostly on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

    Article 

    Google Scholar
     

  • Chai, Y. Silicon photodiodes that multiply. Nat. Electron. 5, 483–484 (2022).

    Article 

    Google Scholar
     

  • Zhou, F. & Chai, Y. Close to-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article 

    Google Scholar
     

  • Li, X. et al. Energy-efficient neural community with synthetic dendrites. Nat. Nanotechnol. 15, 776–782 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wan, T. et al. In-sensor computing: supplies, gadgets, and integration applied sciences. Adv. Mater. 9, 2203830 (2022).

    Article 

    Google Scholar
     

  • Kim, M. et al. An aquatic-vision-inspired digital camera based mostly on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3, 546–553 (2020).

    Article 

    Google Scholar
     

  • Simonyan, Ok. & Zisserman, A. Two-stream convolutional networks for motion recognition in movies. Adv. Neural Inf. Course of Syst. 27, 568–576 (2014).


    Google Scholar
     

  • Ye, H. et al. Evaluating two-stream CNN for video classification. In Proceedings of the fifth ACM on Worldwide Convention on Multimedia Retrieval 435–442 (Affiliation for Computing Equipment, 2015).

  • Liao, F. et al. Bioinspired in-sensor visible adaptation for correct notion. Nat. Electron. 5, 84–91 (2022).

    Article 

    Google Scholar
     

  • Jung, D. et al. Extremely conductive and elastic nanomembrane for pores and skin electronics. Science 373, 1022–1026 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Music, Y. M. et al. Digital cameras with designs impressed by the arthropod eye. Nature 497, 95–99 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lee, M. et al. An amphibious synthetic imaginative and prescient system with a panoramic visible area. Nat. Electron. 5, 452–459 (2022).

    Article 

    Google Scholar
     

  • Ayers, J., Davis, J. L. & Rudolph, A. Neurotechnology for Biomimetic Robots (MIT Press, 2002).

  • Webb, B. Robots with insect brains. Science 368, 244–245 (2020).

    Article 
    CAS 

    Google Scholar
     

  • de Ruyter van Steveninck, R. & Laughlin, S. The speed of data switch at graded-potential synapses. Nature 379, 642–645 (1996).

    Article 

    Google Scholar
     

  • Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron lessons within the fly lamina to movement imaginative and prescient. Neuron 79, 128–140 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, L. et al. Community adaptation improves temporal illustration of naturalistic stimuli in Drosophila eye: I dynamics. PLoS ONE 4, e4307 (2009).

    Article 

    Google Scholar
     

  • Miall, R. The glint fusion frequencies of six laboratory bugs, and the response of the compound eye to mains fluorescent ‘ripple’. Physiol. Entomol. 3, 99–106 (1978).

    Article 

    Google Scholar
     

  • Kelly, D. & Wilson, H. Human flicker sensitivity: two levels of retinal diffusion. Science 202, 896–899 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Uusitalo, R. & Weckstrom, M. Potentiation within the first visible synapse of the fly compound eye. J. Neurophysiol. 83, 2103–2112 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Nikolaev, A. et al. Community adaptation improves temporal illustration of naturalistic stimuli in Drosophila eye: II mechanisms. PLoS ONE 4, e4306 (2009).

    Article 

    Google Scholar
     

  • Hu, W., Wang, T., Wang, X. & Han, J. Ih channels management suggestions regulation from amacrine cells to photoreceptors. PLoS Biol. 13, e1002115 (2015).

    Article 

    Google Scholar
     

  • Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic value of neural data. Nat. Neurosci. 1, 36–41 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Juusola, M., French, A. S., Uusitalo, R. O. & Weckström, M. Info processing by graded-potential transmission by way of tonically lively synapses. Developments Neurosci. 19, 292–297 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Schuetzenberger, A. & Borst, A. Seeing pure photos by way of the attention of a fly with distant focusing two-photon microscopy. Iscience 23, 101170 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Ok. et al. An optoelectronic synapse based mostly on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Warland, D., Landolfa, M., Miller, J. P. & Bialek, W. in Evaluation and Modeling of Neural Methods (ed Eeckman, F. H.) 327–333 (Springer, 1992).

  • Jiang, J. et al. Defect engineering for modulating the entice states in 2D photoconductors. Adv. Mater. 30, 1804332 (2018).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments