Monday, June 5, 2023
HomeTechnologyOperando characterization and regulation of steel dissolution and redeposition dynamics close to...

Operando characterization and regulation of steel dissolution and redeposition dynamics close to battery electrode floor


  • Thackeray, M. M. & Amine, Ok. LiMn2O4 spinel and substituted cathodes. Nat. Power 6, 566 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. Ok. et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Xia, H., Luo, Z. & Xie, J. Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci.: Mater. Int. 22, 572–584 (2012).

    Article 

    Google Scholar
     

  • Lun, Z. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Towards high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule 6, 53–91 (2022).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Investigating particle measurement‐dependent redox kinetics and cost distribution in disordered rocksalt cathodes. Adv. Funct. Mater. 32, 2110502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Solar, X., Xiao, R., Yu, X. & Li, H. First-principles simulations for the floor evolution and Mn dissolution within the absolutely delithiated spinel LiMn2O4. Langmuir 37, 5252–5259 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhan, C., Wu, T., Lu, J. & Amine, Ok. Dissolution, migration, and deposition of transition steel ions in Li-ion batteries exemplified by Mn-based cathodes—a essential evaluation. Power Environ. Sci. 11, 243–257 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tang, D. et al. Floor construction evolution of LiMn2O4 cathode materials upon cost/discharge. Chem. Mater. 26, 3535–3543 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G. et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet–seen spectroscopy and ab initio molecular dynamics simulations. J. Phys. Chem. Lett. 11, 3051–3057 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Maintain. 4, 392–401 (2021).

    Article 

    Google Scholar
     

  • Lin, R. et al. Characterization of the construction and chemistry of the stable–electrolyte interface by cryo-EM results in high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768–776 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cao, L. et al. Fluorinated interphase allows reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li steel batteries. Sci. Adv. 7, eabj3423 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Correlation between manganese dissolution and dynamic section stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    Article 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by floor reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, F. et al. Floor reconstruction and chemical evolution of stoichiometric layered cathode supplies for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article 

    Google Scholar
     

  • Liu, X. et al. Distinct cost dynamics in battery electrodes revealed by in situ and operando delicate X-ray spectroscopy. Nat. Commun. 4, 2568 (2013).

    Article 

    Google Scholar
     

  • Yuan, Y., Amine, Ok., Lu, J. & Shahbazian-Yassar, R. Understanding supplies challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jaumaux, P. et al. Localized water‐in‐salt electrolyte for aqueous lithium‐ion batteries. Angew. Chem. Int. Ed. 60, 19965–19973 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Suo, L. et al. ‘Water-in-salt’ electrolyte allows high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Power 7, 186–193 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Neglected electrolyte destabilization by manganese (ii) in lithium-ion batteries. Nat. Commun. 10, 3423 (2019).

    Article 

    Google Scholar
     

  • Leifer, N. et al. Research of spinel-to-layered structural transformations in LiMn2O4 electrodes charged to excessive voltages. J. Phys. Chem. C 121, 9120–9130 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Vissers, D. R. et al. Position of manganese deposition on graphite within the capability fading of lithium ion batteries. ACS Appl. Mater. Interfaces 8, 14244–14251 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ren, Q., Yuan, Y. & Wang, S. Interfacial methods for suppression of Mn dissolution in rechargeable battery cathode supplies. ACS Appl. Mater. Interfaces 14, 23022–23032 (2021).

  • Xu, W. et al. Understanding the impact of Al doping on the electrochemical efficiency enchancment of the LiMn2O4 cathode materials. ACS Appl. Mater. Interfaces 13, 45446–45454 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S., Cho, Y., Music, H., Lee, Ok. T. & Cho, J. Carbon‐coated single‐crystal LiMn2O4 nanoparticle clusters as cathode materials for top‐power and excessive‐energy lithium‐ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wandt, J. et al. Transition steel dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J. Mater. Chem. A 4, 18300–18305 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Oxygen loss and floor degradation throughout electrochemical biking of lithium-ion battery cathode materials LiMn2O4. J. Mater. Chem. A 7, 8845–8854 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Santo, Ok. P. & Neimark, A. V. Results of metal-polymer complexation on construction and transport properties of metal-substituted polyelectrolyte membranes. J. Colloid Interface Sci. 602, 654–668 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, R., Pasupathi, S., Pollet, B. G. & Scott, Ok. Nafion-stabilised platinum nanoparticles supported on titanium nitride: an environment friendly and sturdy electrocatalyst for phosphoric acid based mostly polymer electrolyte gasoline cells. Electrochim. Acta 109, 365–369 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kuai, C. et al. Section segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Quantification of heterogeneous degradation in Li‐ion batteries. Adv. Power Mater. 9, 1900674 (2019).

    Article 

    Google Scholar
     

  • Li, J. et al. Dynamics of particle community in composite battery cathodes. Science 376, 517–521 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jang, D. H. & Oh, S. M. Electrolyte results on spinel dissolution and cathodic capability losses in 4 V Li/LixMn2O4 rechargeable cells. J. Electrochem. Soc. 144, 3342 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Sarapuu, A., Hussain, S., Kasikov, A., Pollet, B. G. & Tammeveski, Ok. Electroreduction of oxygen on Nafion®-coated skinny platinum movies in acid media. J. Electroanal. Chem. 848, 113292 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. A novel strategy to manufacture membrane electrode meeting by straight coating the Nafion ionomer on catalyst layers for proton-exchange membrane gasoline cells. ACS Maintain. Chem. Eng. 8, 9803–9812 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, P. P. & Kim, D. A facile and sustainable enhancement of anti-oxidation stability of Nafion membrane. Membranes 12, 521 (2022).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments