Sunday, May 28, 2023
HomeBig DataLabor Market Intel at SkyHive Utilizing Rockset, Databricks

Labor Market Intel at SkyHive Utilizing Rockset, Databricks

SkyHive is an end-to-end reskilling platform that automates abilities evaluation, identifies future expertise wants, and fills ability gaps by focused studying suggestions and job alternatives. We work with leaders within the house together with Accenture and Workday, and have been acknowledged as a cool vendor in human capital administration by Gartner.

We’ve already constructed a Labor Market Intelligence database that shops:

  • Profiles of 800 million (anonymized) employees and 40 million firms
  • 1.6 billion job descriptions from 150 international locations
  • 3 trillion distinctive ability mixtures required for present and future jobs

Our database ingests 16 TB of information on daily basis from job postings scraped by our internet crawlers to paid streaming information feeds. And we’ve got accomplished a number of complicated analytics and machine studying to glean insights into international job developments at the moment and tomorrow.

Due to our ahead-of-the-curve know-how, good word-of-mouth and companions like Accenture, we’re rising quick, including 2-4 company clients on daily basis.

Pushed by Information and Analytics

Like Uber, Airbnb, Netflix, and others, we’re disrupting an business – the worldwide HR/HCM business, on this case – with data-driven companies that embody:

  • SkyHive Talent Passport – a web-based service educating employees on the job abilities they should construct their careers, and sources on the best way to get them.
  • SkyHive Enterprise – a paid dashboard (under) for executives and HR to research and drill into information on a) their staff’ aggregated job abilities, b) what abilities firms want to achieve the longer term; and c) the abilities gaps.

SkyHive Enterprise dashboard

SkyHive Enterprise dashboard
  • Platform-as-a-Service by way of APIs – a paid service permitting companies to faucet into deeper insights, similar to comparisons with rivals, and recruiting suggestions to fill abilities gaps.

SkyHive platform

SkyHive platform

Challenges with MongoDB for Analytical Queries

16 TB of uncooked textual content information from our internet crawlers and different information feeds is dumped every day into our S3 information lake. That information was processed after which loaded into our analytics and serving database, MongoDB.


MongoDB question efficiency was too sluggish to assist complicated analytics involving information throughout jobs, resumes, programs and totally different geographics, particularly when question patterns weren’t outlined forward of time. This made multidimensional queries and joins sluggish and dear, making it unimaginable to offer the interactive efficiency our customers required.

For instance, I had one giant pharmaceutical buyer ask if it might be potential to search out the entire information scientists on the earth with a scientific trials background and three+ years of pharmaceutical expertise. It might have been an extremely costly operation, however after all the shopper was on the lookout for rapid outcomes.

When the shopper requested if we may increase the search to non-English talking international locations, I needed to clarify it was past the product’s present capabilities, as we had issues normalizing information throughout totally different languages with MongoDB.

There have been additionally limitations on payload sizes in MongoDB, in addition to different unusual hardcoded quirks. As an example, we couldn’t question Nice Britain as a rustic.

All in all, we had vital challenges with question latency and getting our information into MongoDB, and we knew we wanted to maneuver to one thing else.

Actual-Time Information Stack with Databricks and Rockset

We would have liked a storage layer able to large-scale ML processing for terabytes of latest information per day. We in contrast Snowflake and Databricks, selecting the latter due to Databrick’s compatibility with extra tooling choices and assist for open information codecs. Utilizing Databricks, we’ve got deployed (under) a lakehouse structure, storing and processing our information by three progressive Delta Lake levels. Crawled and different uncooked information lands in our Bronze layer and subsequently goes by Spark ETL and ML pipelines that refine and enrich the information for the Silver layer. We then create coarse-grained aggregations throughout a number of dimensions, similar to geographical location, job perform, and time, which can be saved within the Gold layer.


We’ve SLAs on question latency within the low tons of of milliseconds, at the same time as customers make complicated, multi-faceted queries. Spark was not constructed for that – such queries are handled as information jobs that will take tens of seconds. We would have liked a real-time analytics engine, one which creates an uber-index of our information so as to ship multidimensional analytics in a heartbeat.

We selected Rockset to be our new user-facing serving database. Rockset repeatedly synchronizes with the Gold layer information and immediately builds an index of that information. Taking the coarse-grained aggregations within the Gold layer, Rockset queries and joins throughout a number of dimensions and performs the finer-grained aggregations required to serve person queries. That permits us to serve: 1) pre-defined Question Lambdas sending common information feeds to clients; 2) advert hoc free-text searches similar to “What are the entire distant jobs in america?”

Sub-Second Analytics and Sooner Iterations

After a number of months of improvement and testing, we switched our Labor Market Intelligence database from MongoDB to Rockset and Databricks. With Databricks, we’ve got improved our capability to deal with big datasets in addition to effectively run our ML fashions and different non-time-sensitive processing. In the meantime, Rockset permits us to assist complicated queries on large-scale information and return solutions to customers in milliseconds with little compute value.

As an example, our clients can seek for the highest 20 abilities in any nation on the earth and get outcomes again in close to actual time. We will additionally assist a a lot larger quantity of buyer queries, as Rockset alone can deal with thousands and thousands of queries a day, no matter question complexity, the variety of concurrent queries, or sudden scale-ups elsewhere within the system (similar to from bursty incoming information feeds).

We at the moment are simply hitting all of our buyer SLAs, together with our sub-300 millisecond question time ensures. We will present the real-time solutions that our clients want and our rivals can not match. And with Rockset’s SQL-to-REST API assist, presenting question outcomes to purposes is simple.

Rockset additionally quickens improvement time, boosting each our inner operations and exterior gross sales. Beforehand, it took us three to 9 months to construct a proof of idea for purchasers. With Rockset options similar to its SQL-to-REST-using-Question Lambdas, we are able to now deploy dashboards custom-made to the possible buyer hours after a gross sales demo.

We name this “product day zero.” We don’t must promote to our prospects anymore, we simply ask them to go and take a look at us out. They’ll uncover they’ll work together with our information with no noticeable delay. Rockset’s low ops, serverless cloud supply additionally makes it simple for our builders to deploy new companies to new customers and buyer prospects.


We’re planning to additional streamline our information structure (above) whereas increasing our use of Rockset into a few different areas:

  • geospatial queries, in order that customers can search by zooming out and in of a map;
  • serving information to our ML fashions.

These initiatives would doubtless happen over the following yr. With Databricks and Rockset, we’ve got already remodeled and constructed out a wonderful stack. However there’s nonetheless way more room to develop.



Please enter your comment!
Please enter your name here

Most Popular

Recent Comments